skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kruzshak, Samantha_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Chronic wounds present significant therapeutic challenges due to prolonged inflammation and bacterial infections, impeding healing. Conventional medicinal dressings typically deliver a single drug with a fixed release profile and lack responsiveness to variations in wound size, nature, or severity. This study introduces an innovative microneedle (MN) patch designed with different microneedle geometries and capable of dual‐drug delivery to address irregular wounds and complex therapeutic requirements. Utilizing CO₂ laser lithography, microneedle molds are fabricated with diverse geometries by precisely controlling laser parameters such as speed, power, and focus, achieving needle heights ranging from 162 ± 30 µm to 1570 ± 40 µm. The patch facilitates simultaneous delivery of simvastatin (SIM) for anti‐inflammatory and tetracycline hydrochloride (TH) for antibacterial properties, targeting different skin depths. In vitro diffusion studies confirm geometry‐dependent drug release profiles, with SIM achieving controlled release over three days and TH exhibiting sustained release over four days. Biocompatibility assays confirmed safety and enhanced fibroblast migration is noted in wound‐healing studies. Antimicrobial testing reveals a 99.9% reduction in bacterial viability. This cost‐effective and scalable approach enables precise, localized delivery and customization of MN arrays to match various wound geometries, offering a versatile platform for personalized medicine and improved chronic wound management. 
    more » « less
  2. Abstract Conventional drug delivery methods often face challenges in terms of patient adherence and drug administration. Microneedles (MNs) patches have emerged as a promising alternative, offering a minimally invasive transdermal route for medications. However, their drug‐loading capacity remains limited, particularly for hydrophobic active pharmaceutical ingredients (APIs). Herein, microneedles are designed based on eutectic solvent gels (eutectogels) as transdermal carriers for hydrophobic APIs. A natural deep eutectic solvent (NADES) is combined to enhance the solubility of the hydrophobic APIs within the GelMA/PEGDA matrix for mechanical strength and sustained release from the resulting eutectogels microneedles (EU‐MNs). Using docetaxel, 5‐fluorouracil, and curcumin as hydrophobic APIs models, the superior drug‐loading capacity of the EU‐MNs is demonstrated. In vitro experiments revealed that the EU‐MNs provided a sustained release of distinct hydrophobic APIs over 4 days. Additionally, by properly adjusting the concentration and type of APIs, these microneedle patches do not exhibit cytotoxic effects on fibroblasts cell line (NIH/3T3), underscoring their potential for safe and effective transdermal drug delivery. These findings highlight the potential of EU‐MNs as versatile, eco‐friendly transdermal vehicles for large amounts of hydrophobic APIs, leading to more effective treatments for these drugs. 
    more » « less